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1. INTRODUCTION

Let X be a compact subset of the real line and denote by C(X)
the class of all real valued continuous functions defined on X. Norm
C(X) with the uniform norm, i.e. for all f e C(X),

[1€]] = max{|f(x)|: x ¢ X}. Let n be a positive integer and set

0
Rn(xD = {1/p: p € Hn, p(x) > 0, Vx ¢ X} where Hn denotes the set of all
real algebraic polynomials of degree < n. Note that Rg(x) consists of the

positive elements of the wawel set,denoted by Rg(x).

In this paper, we shall study the problem of approximation of positive
functions in C(X) by elements of Rg(X); The emphasis of this study is as follows.
First, we wish to contrast this setting with that of approximation by elements
of Rﬁ(x), m>1, n>1, in C(X). Basically, there is one major difference,
namely that existence holds for this casej; whereas, this is not true for
R:(X), m>1,n>1 and X not an interval. In addition, when X is not an
interval the proof of existence is very long and tedious. Next, we shall
observe that the usual characterization (alternation) and uniqueness results
hold for this problem using the standard arguments. Finally, we shall discuss
the computation of best approximations from Rg(x).

These results will be used in a forthcoming paper on uniform approximation
on [0, ®) with reciprocals of polynomials. See ([2], (3], [u], [8], [14] and [18])
for various recent studies concerning certain aspects of this problem. Since
we are interested in applying these results to this setting, we 'shall approximate

1/f in what follows.




2. EXISTENCE

As noted in the introduction, it is well known that best rational
approximants from R:(X), m21l,n21 and X not an interval need not
exist. Indeed, let X be a finite subset of [0,1], such that Oe X

and card(X) > n+ m+ 2. Define f e C(X) ~ R:(X) by £(0) = 1 and

Zkx+1l

f(x) =2 for xe X~ {0}. Let rk(x) be defined by rk(x) o

Then li'ml If - rkH = 0 showing that no best approximation exists for
koo
f from R:(x).

In what follows, let n be a nonnegative integer and let X be a
compact subset of [0,B], B > 0 with card(X) 2 n + 2. Set
K={pe n: p(x) >0, V¥x e X}, let feC(X), f¢#K with £f(x) >0

for all xe X and set A = 1nf{||-]—‘ - -!'-H : p e K. We have the follow-

£ P

ing lemma.

. LEMMA 1. Let X, f, A be as defined above. Then 4 > 0.

ia

Proof. Suppose A = 0. Then, setting , C a constant,

alo

qeK, ||]q|]|] =1, there is a sequence of polynomials {q } <K such

c
that 12[|—:—-i||+0. Since IcnlSl+%,m-min{|f(x)|:xeX},

we may assume that & = c*20 and T > q* uniformly, with q* ¢ Hn

and ||q*|] = 1. We claim that c* > 0. Suppose c* = 0, and let




———————

-

x € X be such that q*(x) > 0 (such an x exists since q* # 0 and
card(X) 2 n+2). Then we have

c

§ ik § Bt s m 1 _ %apy
O FI@ TI® Py " we T@ L@ Swellfogll =0 vhieh
: “n 1
is a contradiction. Hence ¢* > 0. Since ||E—|[ <1+ ||?1| we have
: n
b O '
- that q*(x) >0 for all x ¢ X. Thus — = = € K uniformly and
q
* c *
|[% - 2;1| = i:2||%--~a§|| = 0, hence f --E; € K, which is a contra-

diction. Therefore A > 0,

THEOREM 1. Let n be a nonnegative integer and let X, K, f and

A be defined as above. Then there exists a p* € K such that

A
I - 25l - o,

Pioof. Since X 1s compact, f > 0 on X, there exist positive

constants m, M such that m < <M for all xe X. For peK

f(x)

we write %---% where q(x) >0 for all xe X, c >0 and ||q|] =1.

Then, as in Lemma 1, there exist sequences ‘{cn}, {qn} such that c > 0

for all n, q (x) >0 for all xe X with ||qn|| = 1 satisfying
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By extracting subsequences {c_} and {q_ } of {c_ .} and {q }
\a ?muJL nu — : WEgseH n, n 94

respectively, there exists ¢c* 2 0 and q* ¢ Hn with q*(x) 2 0 for all

xeX and ||q*|]] =1 such that ¢ + c* and q, (x) + q*(x)

‘.\\ N R i X

uniformly in X.
We now claim that c* > 0. Indeed, suppose c* = 0 and let
Z= {xl....,xk} < X, k <n, be all the zeros of q* contained in X.

Now, if Z =@, then q*(x) > 0 for all x € X holds and we have for

each x ¢ X

c c
n ' n
1 1 0 1 v 1 v
by = = - < — s i) 1 ¥
0 I F@ R W ™ ln| | < || = & (1)
v v
Thus, .taking ; ~% , the inequality

B TPl
) p(x)

1 A A 5
| |f(x) i 7| < 5 holds for each x € X. Since p ¢ K,

this contradicts our assumption that 1nfﬁ|% - %‘I |: pe K} =A>0.
. pell
n

Therefore, we assume that 2 # . Partition 2Z into two subsets




.

Z=1UJ where I ={xe€ 2:x 1is an isolated point of X}, and

J=2Z~T1., Now, for x€ X~ Z we have that q*(x) >0 so ?%;T-S A

holds by (1). Also, since fe€ C(X) and y e J implies that y 1is a

limit point of X~ Z we have, by continuity, that ?%;3-5 A holds.

Now, if I =@, then our argument'for the case 2 =@ yields our
desired contradiction. Y nce, let us assume that

1= {yl W ML yu}, M21, Now, let a<b be such that X < (a,b).

Construct open intervals (av,Bv) as follows (observing that X~ I is

a compact subset of X): set @ = max{a, max{x: x e X~ I and x < yl}}
and B, = min{b, min{x: x e X~ I and x> yl}}. If 8, > y, stop this
process with the interval (al,Bl). If Bl < yh, then there exists an

integer 11, ls 11 < u-i such that Yy < Bl In this case,

< y -
1 i.+1

1

set a, = max{x: x € X~ I and x < y11+1} and

B8, = min{b, min{x: x ¢ X~ 1 and x>y }}. Note that we must
2 11+1

have a, 2 81 as 81 €e X~ 1 and 81 < yi1+1. Once again, if 82 > yu,

stop this process. If 82 < yu, we continue and, since u 1is finite,
this construction must end after, say v < u steps, giving v pairwise

disjoint open intervals (ul,Bl) gie v (av,Bv) where

a f a, < 8y < a, < 32 € see a < Bv < b, (aigﬁi) NI+#@ and

(01,81) Nn(X~1I)=¢ for {=1,...,v. For convenience, let us assume

that (a:,gr) nNl= {yir_1+l,...,yir} for r=1,...,v with 10 = 0.
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Now we will construct a new set of points I' where I'n X =0 as

follows: 1if (at’Br) is such that a < a_, Bt <b and

(or,Br) Nl = {yir‘1+1....,yir} consists of an odd number of points,
then set yi ---]i'-(Br * ¥, ) and require that yi € I'. Therefore, 1I'
4 r : ‘ r

can consist of at most Vv points. For convenience, set
I's= {yi,...,y;}, Yy<v, if 1' # @#. Also, in this case, note that

q*(x) must vanish at yir-1+1,...,yir and q*(ur) >0, q*(Br) > 0 both

hold implying that q* must have either one Vo i, +H1S1s1 asa

zero of even order (at least two) or have at least one more simple zero

in (a_,8). That is, q* must have at least s + 1 zerosin

r-1

(cr.Bt). Set

n(y‘.;.-x) ’ I#¢
i=1

v(x) = : (2)
1 R g o

Next, we shall construct a sequence of polynomials ‘{GE}NSI

corresponding to each interval v(ai,Bi), 1 = .1,..s,V. First, set

-1 u : ;
w, =fy)/NT (y,-y) T (v, -y)]|viy)]| (3) '
h | h | {=1 h | i {=4+1 i ] h | E
0 u
for j=1,...,y where M= NI =1 and note that wj +0 as N > =, : ]
: 1 p+l.




|
|

Let us first consider the interval (61,81) where

N
(01,81) nis= {yl,...,yil}, 1s 11 S u. The precise form of Gl will

depend upon the structure of (01,81) although, in all cases, the poly-
nomials Gg will have certain essential properties. Therefore, we must

consider cases.

Case 1. a. = a, il =2m + 1, m2 0. Note that in this case we

1

must have 81 < b since card(X) 2 n + 2. Furthermore, this interval

gives no contribution to I'. Set

m n
ﬂg(x) = -on[(yzj+1 - w2j+1) —x]JYll[(y2j + wzj) - x] where mj is

defined by (3). Now, since wj +- 0 as N+ for all j and

= LRCN 2
&S, Sy~ < yil < 81, we can select an Nl such that N N1

implies that

e W s b B B e T R R T e e

1 1 1

Thus, for N 2 Nl, we have that Gg(x) is positive at Yyseees¥y o and
1

Gg(x) >0 for x2 81 (which implies that Gg(x) >0 for all x ¢ X).
Let p(s) denote the number of zeros of q*(x) in the interval

v
(us,B’), s =1,...,4 where we count a zero of order p as p zeros.

-w for

Then we have aﬁg < p(l) in (al,sl). Also, setting ¢ 1

gkl
i odd and e, =y; + wy for 1 even and noting that €y > y; as N+ o,

we have, for 1< 1 < 11, that

B




T

10

/N N i+1 1~1 ’il
ING (y,)) =1/NC-D)" w, T (e, -y,) T (e, -y,)
b i | i j=1 3 i J=141 j i
i-1 M I ,
Bl,-y) I (,=y)lvly,)
B il e S
£ 3y
fGy )N (y, =) T (e, -vy,)
Y * Ve d A
" Now, using (2) and (3), we have
1/N¢N(y)->f(y)-1; (y -y)ﬁ(y'-y) as N+wo, 1<4i<i
gl L ¥ ey 3 L g i = 1

1

Also, for x e X satisfying x > Yy s we have (since 11 is assumed

1
. il 11 il
odd) that ﬂl(x) =N, -x)= N (x-¢)+ N(x-y,) as N>,
J:l J j:]_ J .‘zl 3

}

Case 2. @ = a, 11 =2m, m 2 1. Once again we have Bl < b and

(01;81) nI'=¢@. Set

N m-1 m
9.(x) = I [(y + w ) = x11 [(y,, - w,,) - x]. Again it follows
1 so0 T2341 T Y231 ety R

that we can select an N1 such that N 2 N1 implies that ¢§(yi) >0,
11z 11, Gg(x) >0 for x 2 81 (which implies that ﬂ?(x) >0 for

all xcz X) and aﬂg < p(l). Setting ng =y;tue, for i odd and

i

that

ng = ¥g - ouy for 1 gven, we have for Yy lsisi

1’
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i .
1
l/Nﬂg(yi) = l/N(-l)i-lwi I (m, - yi). Again, using (2) and (3) we have
j=1 3
j#i
N _111 X '
(since 1, 1s even) that 1/N¢l(yi) > f(yi) i (yj - yi) zl(yj = Yi)

3=1,+1 j

as N-+» o, Also, for xe X with x > Yy we have that
1

i i i

1 1 1
ﬂg(x) = I(n,-x)= N(x-n,)> I (x- yj) as N - », Note that
3=1 3 j=1 R T |

Og has the same limit, as N -+ =, for each of these two cases.
Next we consider the case where al > a. In this case, the contri-
bution of 62 is identical with that of ¢§ for (ar,Br), =2 V.

Thus, we consider the construction of ﬁg for (ar,Br) where

r=1,...,v. Here we must consider an additional four cases. For

convenience set £ = i and k=41 -1 so that

r-1 b r-1

(at,Br) nNIs= {yir_1+1,...,yir} = {y2+1,..,,y2+k}.

Case 3. a. > a, 8r <b, r=1l,...,v3 k=2m+ 1, m 2 0. Note that

€ I' and p(r) 2 2m + 2. Set

in this case yi = y£+k
r

N '
0.(x) = (you - x)on[(y2+2j+1 ¥ Opogey) < 2T

Once again, there exists an Nr such that for N 2 Nr we have




M e

i) ¢§(x) >0, x<a

r

1) BG) >0, 1=b+l. 24k

1i1) Gz(x) >0, x> Br.

(Note that iii) follows from the even number of linear factors in (4),

all of which are negative). Therefore, ¢§(x) >0 for all x e X.

Setting Py = Yaui + Worq for 1 odd and Py = T = Oorf for 1
[

even, we have for x < a

N k 11‘ ‘

= — ' - - -
ﬂr(X) 121(91 X)(}"‘+k x) > =1n +1(yj x)(yi X) as N > =,
L 3 r-1 o

Similarly for x 2 Br (since k 1is odd)

N k 1r

¢ (x) = T (p, - x)(y!,. - x) > i x-y)(x-y!') as N>,

N e e j=i__+ 3 i

Finally, for Yy ir—l +1<1i<s ir’ we have, using (2) and (3)

(assuming y! = y! for some 6, 1<6 <r),
ir 0

p // =1 .+l g™ 22 )
1 (y,) =1 H(-1) w it (b = ¥,) I by = y.)(y; y
rvi 1 4m j i g=tei 41 j el I
1-1 u Y l
BAy, =5) B (¥, =9y 00 N ys =~ ¥.)
- o AL+ R Al S0 il i
1-1 -1 PN
T T ) ( )
f(y,) T (y, ~p.) Py =¥y, =¥
i BN T e A B

r-1

st
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Mook e

Case 4. ur > a, Br <b, k = 2m, m 2 1. Note that in this case

(ur,Br) gives no contribution to I'. Set

m-1 m
N -
LA jEol(y1+2j+1 T g x]jgl[(yz+2j = Gyspg) Tl -

As before, there exists an Nr such that N 2 Nr implies ¢§(x) >0

for all x € X. Using pi as defined in Case 3, we have, for x < ar

i

k T

¢§(X) = T (oj - x) > n (y, - x) as N+, and for x > Br
3=1 j=1_+1 i

N ok 1r

Gr(x) = 1 (pj - x) > n (x -y,) as N+ ®, Finally, for Yyo
=1 =i 41 3

1r-1 +1<1¢xs 1:’ we have, using (2) and (3).

. -1,
1/80_(8) = WW(-1) wg T (p

T " T Iy - v,
T(y,-y,) I (y,-y)0]|y! -y
P O T D R e

- >

-1 -1 t’ )
£(y,) &Ky = P . o5~y
: S i

i=1

13
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: 1
) r-1 M Y .
f > fGI m -y T G, -y) Tyl -y,| as N+ e.
LT e R T T R < ek
X

Case 5. a. > a, Br = b, 1r - ir-l =k=2m+ 1, m 2 0. Note that

in this case r = vy, iv = pu and (av’Bv) gives no contribution to I'.

] m m
| b ﬂg(x) G j20[(y1+2j+1 = “z+2j+1) T xljzll(yz+2j = Wpypy) — X1 where

wy is defined by (3). As before, there exists an Nr such that N 2 Nr

implies Og(x) >0 for all x ¢ X. Using Py as defined in Case 3, we

k u
have for x < a , ﬂg(x) = I (pi -x) > I (yi -x) as N> =,
b i=1 i=1 41
v-1
Also, for Yy» ir-l + 1 <ic<y
3 K :
= 1-4 41§ _liv-l Y
= - - z - ' -
/80 (y;) = W(-1) wy 121("3 vy) > £(yy) = A yj)jl_rllyj vyl
dHc-teny

a8 N +> » using the same argument as before.

Case 6. a > a, Br =b, (r =v, ir =u), yu - 1r-1 =k =2m, m2 1.

Again, the interval (av,ev) gives no contribution to I'. Set

N m-1 m
¢v(x) = 120[(y2+2j+1 + “£+2j+1) - x]JEl[(yz+zj - wz+2j) - x]. As before,
N L
we have Gv(x) >0 for all x ¢ X. Gg(x) * 1 (y‘i- x) as N> o,
' 3=, %




+1<4isy,

for x < a . For Yy i

v-1
: N i3 iv-l Y 4
l/ﬁav(yi) - f(yi) jEl (yi - yj)jzllys - yil. Recalling that p(s) is

the number of zeros of q*(x) in the interval (0,8, 8 = 1,...,v,

we observe that in Cases 4, 5 and 6, aﬂg(x) < p(r). Therefore, we set
¥ o5 N

PN(x) = 1 ﬁs(x), where Gs(x) is constructed with respect to the
s=1

interval (as,Bs), s =1,...,v as described above (depending upon |

(08,88». Since aﬁg(s) < p(s), these intervals (by construction) are

pairwise disjoint and q* =1, we have that dp_ < 3q*. Also,
X et

there exists an N such that N = N* implies that Gg(x) >0 for all

— b( xeX,s8=1,...,v so that Py e(i) for N 2 N*, Furthermore, for
Caf ®
xe X~1I,
) v |
lin ol = (lim% T lim —2 ' |
Moo PN Mo [ g=l N @ (x) |

1 H Y =]
= (lim 'ﬁ)( 1 |y1 -x| I |yj'_ - x| = 0 since the
N i=1 i=1

quantity in parentheses on the right is not equal to zero. Also, since

/ﬁ

I\)I' distd@,x ~1I) =c >0, we have that the above convergence is uniform in

X~ I. Finally, for yy el (say vy € (“r’Bt)) we have that




A\

Yim =2 T Ik R -f(yi)-l. Thus, by

Np (y ) 7 >0 = N —p00 N
Noo TENVTH N :{éos(yi) N Nﬂt(yi)

I 1 o 1
£(y))  Npy(yy

selecting N > N* sufficiently large so that )| <A,

i=1,...,u and |§-—IT-)—| <A holds for all x e X~ I we have that
Pylx

1
f(x)

H% - ﬁ%—”x < A (recall that | | <4 on X~1I), which is our
N

desired contradiction. Hence, we must have c* > 0. Thus, q*(x) >0 ; 1

c *
for all x € X. Furthermore, ., c_* uniformly in X as v > = sgo
) T i &y
that i ik | S 1lim T SR A This, in turn implies that
q Vo 9,

p* = q*/c* 1is our desired best approximation from K.
Finally., we would like to close this section with results on characterization
and imiqueness. Using the standard argument [17] for alternation of best rational #

approximants on an interval we have:

THEOREM 2. Let f ¢ C(X) ##3A02220 & where X is a compact :

subset of the real line. Let n 2 0 be a given integer and set

RO = {1/p(): p e I, p(x) >0, forall xc X}. Assume 1/f ¢ R2(X).

Then a necessary and sufficient condition that 1/p* is a best approxi-

mation to 1/f on X from Rg(x) is that the error curve

e*(1/£) = 1/f - 1/p* alternate at least n + 1 times.

. P— y- T ——— | T . 'llldl
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’ v m
It should be remarked that this theorem is also valid for Rn(x)

={r=p/q: pel,qel ,q>00nXand [[qf = 1}, vibetierestriction

On the question of uniqueness, we can simply quote the results we
desire from work of Cheney and Loeb [6, 13]. Indeed, they actually
prove that whenever existence holds for R:(x) then so does uniqueness

and strong uniqueness.

THEOREM 3. (16, p. 94-95]. Let f e C(X) satisfy f(x) > 0 for

all x € X. Then there exists a unique best approximation 1/p* to 1/f

from Rg(X). Furthermore, there exists a positive constant y = y(f)

such that for each 1/p ¢ Rg(x) (strong uniqueness)

3.3 i1 3 g
g =il & H;'p—*ll +Y||;-;;|| .
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3. COMPUTATION

In this section, we wish to describe three possible algorithms for
computing best approximations to 1/f, f(x) > 0 for all x ¢ X, from
Rg(x). The algorithms are Remes, differential correction and a hybrid
algorithm which is a combination of the first two. In a future paper
we shall report on numerical experiments involving these algorithms.

In what follows, we shall assume X 1is a finite set.

Remes algorithm has been widely studied and appears often in the
literature. Two explicit papers where the Remes algorithm is proposed
for calculating best rational approximations are in Cody, Fraser and
Hart (7], and Ralston [15]. The Remes algorithm consists of two main

operations:

1) the solution of a nonlinear system

and 11i) the exchange of a certain set of points.

It is known that in general the nonlinear system may have many solutions
(and sometimes none of which belong to Rg(x)) [16, p. 104], [9]. Thus
Remes could fail to run due to its inability to either solve this system
or by returning a solution to this system which is not in the class
Rg(X). (A second problem with Remes algorithmwill be mentioned later.) Even if

+ sttt 1
the algorithm is able to solve this system at each step with a solution in Rn(X) ’

convergence can only be guaranteed if the algorithmwas initialized with a sufficiently

"good" starting approximation (for the case X is an interval). In arecent study by Lee

and Réberts [12], it is observed that the Remes algorithm is very fast when it

converges, but may fail to converge. Also, observe that in the theory




o
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we are considering here every function being ap#toximated‘is normal in the

usual sense.

The differential correction algorithm was originally introduced by
Cheney and Loeb [5]. This algorithm was shown to have very desirable
convergence properties by Barrodale, Powell and Roberts in [1] and a
Fortran listing of it can be found in [11]. In the setting considered
here this particular algorithm possesses guaranteed (quadratic)
convergence to the desired best approximation in Rg(x). However, in

prgctice, if X is large it is sometimes necessary to solve this

problem on a subset of X and then initialize the full problem with

this solution. This is due to the fact that this method involves a

linear programming subroutine which is sometimes numerically difficult
to solve without a good initialization. Also, due to the inclusion of
this linear prograﬁming subroutine, this algorithm is quite slow (some

19 times slower than Remes (when Remes converges) in tests done in [12]).

~ The final algorithm that we wish to mention for this problem is a
hybrid of the above two. Precisely, we propose to replace the step of
the Remes algorithm where a nonlinear system is solved to get a best
approximation on a reference set (smaller than X) with the differential
correétion algorithm applied to this reference set to give the desired
best approximation on this set. This method will eliminate the problems
of the Remes algorithm associated with the solution of the nonlinear
system in that a best approximation on the reference set (which is
positive on the réference set) will be found. However, there is still

no guarantee that the best approximation on a given reference set found
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by the differential correction algorithm will actually belong to Rg(x)
(i.e., it may fail to be positive (or defined) on some points of X not
in the reference set). In fact, we have encountered such examples in
testing our hybrid algorithm and these examples have given rise to a second
problem in the Remes algorithm. Namely, the exchange procedure cycled.

Thus, it is also necessary to modify the exchange procedure. At
present we are testing two modified algorithms; In order to describe these
modifications, let us assume that we are at the k-th step of the iteration
and suppose that the best approximation r, on the reference set Xk (n+2
points from X) has been found by the differential correction algorithm.

The first modified exchange algorithm is as follows. Perform a
multiple exchange in the usual manner only aﬁong those points of X where
rk(x) > 0 holds. If ry is not the best approximation on the set of points
where it is positive then a new reference set is obtained and the algorithm
proceeds to the differential correction phase to find the best approximation
on this new reference set. If ry is the best approximatior on the set of points
where it is positive then terminate the algorithm if rk(x) >0 for all x € X
(rk is the desired best approximation on X) or adjoin to the set Xe» ¥ € X
where rk(y) = min{rk(x): x € X}. Note that rk(y) < 0 must hold in this case.
Set X! = {ylu Xk and apply the differential correction algorithm to this

k+1

set of n + 3 points finding the best approximation Pr4y OO it. Next, reduce

3 5 : .
xk+l to a subset of n + 2 points, xk+l’ where Xk+l is chosen so that alternation

holds on X Now repeat the exchange procedure on X with respect to r

k+l’ k+1 k+l®
The second modified exchange algorithm is basically a reordering of the above
one. In particular, if Ty the best approximation on Xy is positive on all of X

then we proceed with a multiple exchange in the usual manner, If vy is not
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positive on all of X then we adjoin y € X to Xk.precisely,as above, getting
Xi*l and proceed as in the above algorithm.

One can prove that in both of these modified algorithms, cycling cannot
occur and that global convergence holds for X finite (i.e., error of approximation
on successive reference sets strictly increases). In a future paper we shall
give a detailed description of these two algorithms and report on the results
of 6ur numerical testing of them. Also, we are studying the extension of these

ideas tO‘Rﬁ(X) and will also report on this at that time.

Aelknouwledge: The second author wishes to acknowledge a valuable personal
conversation with Professor Dietrich Braess with regard to
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